Enterprise-Grade Architecture • V2 Technical Blueprint

Technical Architecture AstraPath AI v2.0

Comprehensive full-stack architecture for scalable AI-powered career development platform. Built for enterprise performance with Next.js, Express.js, MongoDB, Redis, and advanced multimodal AI integration.

Microservices Architecture
Auto-Scaling Infrastructure
Multi-Modal AI Pipeline

System Architecture Overview

Interactive System Architecture
Frontend Layer
Next.js 15 + TypeScript
API Gateway
Nginx + Load Balancer
Auth Service
Express.js
AI Service
Python + FastAPI
Learning Service
Node.js + Express
MongoDB
Primary DB
Redis
Cache + Sessions

Frontend Architecture

Next.js 15: App Router with Server Components

TypeScript: Full type safety and IntelliSense

Tailwind CSS: Utility-first styling with custom design system

Zustand: Lightweight state management

React Query: Server state management and caching

Backend Architecture

Express.js: RESTful APIs with middleware architecture

Prisma ORM: Type-safe database access and migrations

JWT + OAuth2: Secure authentication and authorization

Redis: Session management and caching layer

Bull Queue: Background job processing

Complete Technology Stack

Frontend Stack

Next.js 15
App Router + Server Components
TypeScript 5.0
Full type safety
Tailwind CSS
Utility-first styling

Backend Stack

Node.js + Express
RESTful API server
Prisma ORM
Type-safe database
Redis Cache
Session + Cache layer

AI/ML Stack

Python + FastAPI
ML model serving
OpenAI GPT-4
Language model
Multimodal APIs
Vision + Text processing

Database Architecture & Schema

Prisma Schema Design

// User Management
model User {
  id            String   @id @default(cuid())
  email         String   @unique
  passwordHash  String
  profile       Profile?
  subscriptions Subscription[]
  sessions      Session[]
  createdAt     DateTime @default(now())
  updatedAt     DateTime @updatedAt
  @@map("users")
}

model Profile {
  id          String @id @default(cuid())
  userId      String @unique
  firstName   String
  lastName    String
  jobTitle    String?
  company     String?
  skills      Skill[]
  goals       Goal[]
  user        User   @relation(fields: [userId], references: [id])
  @@map("profiles")
}

// Learning System
model LearningPath {
  id          String @id @default(cuid())
  title       String
  description String
  modules     Module[]
  difficulty  Difficulty
  estimatedHours Int
  tags        Tag[]
  createdAt   DateTime @default(now())
  @@map("learning_paths")
}

// AI Models & Processing
model AiModel {
  id          String @id @default(cuid())
  name        String
  version     String
  apiEndpoint String
  parameters  Json
  isActive    Boolean @default(true)
  @@map("ai_models")
}

MongoDB Collections

User Analytics Collection

{
  "_id": ObjectId(),
  "userId": "cuid_user_id",
  "events": [
    {
      "type": "tool_usage",
      "toolId": "interview_coach",
      "timestamp": ISODate(),
      "duration": 1200,
      "result": "completed"
    }
  ],
  "dailyStats": {
    "toolsUsed": 5,
    "timeSpent": 3600,
    "goalsCompleted": 2
  }
}

AI Processing Queue

{
  "_id": ObjectId(),
  "jobId": "ai_job_12345",
  "type": "multimodal_analysis",
  "status": "processing",
  "priority": "high",
  "payload": {
    "userId": "user_id",
    "inputType": "resume_analysis",
    "data": "base64_encoded_content"
  },
  "retries": 0,
  "createdAt": ISODate()
}

API Architecture & Endpoints

RESTful API Structure

// Authentication & User Management
POST   /api/auth/register
POST   /api/auth/login
POST   /api/auth/refresh
DELETE /api/auth/logout

// Career Tools API
GET    /api/tools
POST   /api/tools/:toolId/execute
GET    /api/tools/:toolId/history

// Learning Paths API
GET    /api/learning/paths
POST   /api/learning/paths/:pathId/enroll
GET    /api/learning/progress/:userId
PUT    /api/learning/modules/:moduleId/complete

// AI Processing API
POST   /api/ai/multimodal/analyze
POST   /api/ai/text/generate
GET    /api/ai/jobs/:jobId/status
POST   /api/ai/models/configure

// Analytics & Metrics
GET    /api/analytics/user/:userId
POST   /api/analytics/events
GET    /api/analytics/team/:teamId
GET    /api/metrics/performance

GraphQL Schema

type User {
  id: ID!
  email: String!
  profile: Profile
  learningPaths: [LearningPath!]!
  analytics: UserAnalytics
}

type LearningPath {
  id: ID!
  title: String!
  description: String!
  modules: [Module!]!
  progress(userId: ID!): Progress
  difficulty: Difficulty!
}

type Query {
  user(id: ID!): User
  learningPaths(
    filter: LearningPathFilter
    sort: SortInput
    pagination: PaginationInput
  ): [LearningPath!]!
  
  aiTools: [AiTool!]!
  analytics(userId: ID!): UserAnalytics
}

type Mutation {
  executeAiTool(
    toolId: ID!
    input: AiToolInput!
  ): AiToolResult!
  
  enrollInLearningPath(
    pathId: ID!
    userId: ID!
  ): EnrollmentResult!
}

Multi-Layer Caching Strategy

L1 - Browser Cache

• Service Worker caching

• LocalStorage for user preferences

• IndexedDB for offline data

• HTTP cache headers (1-24h TTL)

L2 - CDN Cache

• CloudFlare edge caching

• Static asset optimization

• Image transformations

• Geographic distribution

L3 - Redis Cache

• Session management

• API response caching

• User-specific data

• Real-time analytics

Redis Cache Configuration

// Cache configuration with different TTL strategies
const cacheConfig = {
  // User sessions - 24 hours
  session: { ttl: 86400, prefix: 'sess:' },
  
  // API responses - 1 hour with background refresh
  api: { ttl: 3600, prefix: 'api:', backgroundRefresh: true },
  
  // AI model responses - 6 hours
  aiResults: { ttl: 21600, prefix: 'ai:' },
  
  // User analytics - 30 minutes
  analytics: { ttl: 1800, prefix: 'analytics:' },
  
  // Learning progress - 15 minutes
  progress: { ttl: 900, prefix: 'progress:' }
};

// Smart cache invalidation
class CacheManager {
  async invalidateUserData(userId) {
    const patterns = [
      `api:user:${userId}:*`,
      `progress:${userId}:*`,
      `analytics:${userId}:*`
    ];
    await this.deletePatterns(patterns);
  }
}

Performance Targets & Monitoring

Performance Targets

First Contentful Paint < 1.2s
Largest Contentful Paint < 2.5s
Time to Interactive < 3.8s
API Response Time < 200ms
AI Processing Time < 5s

Monitoring & Observability

DataDog APM
Application performance monitoring
Grafana + Prometheus
Metrics visualization & alerting
Elasticsearch + Kibana
Log aggregation & analysis
Sentry
Error tracking & debugging

Security & Compliance Framework

Security Layers

Network Security

• WAF with DDoS protection

• SSL/TLS 1.3 encryption

• IP whitelisting for admin

Application Security

• OAuth 2.0 + JWT authentication

• Role-based access control (RBAC)

• API rate limiting

Data Security

• AES-256 encryption at rest

• PII data anonymization

• Secure key management (HSM)

Compliance Standards

SOC 2
Type II Certified
GDPR
EU Compliant
HIPAA
Healthcare Ready
ISO 27001
Security Standard

Security Monitoring

// Security event monitoring
const securityEvents = {
  loginAttempts: {
    threshold: 5,
    window: '5m',
    action: 'temp_lockout'
  },
  
  apiAbuseDetection: {
    threshold: 100,
    window: '1m',
    action: 'rate_limit'
  },
  
  dataExfiltration: {
    threshold: '10MB',
    window: '1m',
    action: 'alert_admin'
  }
};

Scalability & Infrastructure Plan

Auto-Scaling Strategy

# Kubernetes HPA Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: astrapath-api-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: astrapath-api
  minReplicas: 3
  maxReplicas: 50
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80

---
# Vertical Pod Autoscaler
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: astrapath-vpa
spec:
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: astrapath-ai-service
  updatePolicy:
    updateMode: "Auto"

Infrastructure as Code

# Terraform AWS Infrastructure
resource "aws_eks_cluster" "astrapath" {
  name     = "astrapath-cluster"
  role_arn = aws_iam_role.cluster.arn
  version  = "1.28"

  vpc_config {
    subnet_ids = aws_subnet.private[*].id
    endpoint_config {
      private_access = true
      public_access  = true
    }
  }

  enabled_cluster_log_types = [
    "api", "audit", "authenticator", 
    "controllerManager", "scheduler"
  ]
}

resource "aws_eks_node_group" "main" {
  cluster_name    = aws_eks_cluster.astrapath.name
  node_group_name = "main-nodes"
  node_role_arn   = aws_iam_role.node.arn
  subnet_ids      = aws_subnet.private[*].id

  instance_types = ["c5.xlarge", "c5.2xlarge"]
  capacity_type  = "SPOT"

  scaling_config {
    desired_size = 3
    max_size     = 20
    min_size     = 1
  }
}

Multi-Region Deployment Architecture

US-East-1 (Primary)

• Full application stack

• Primary database (MongoDB)

• Redis master cluster

• CDN origin servers

EU-West-1 (Secondary)

• Read-only application stack

• MongoDB read replicas

• Redis slave cluster

• GDPR compliance zone

Asia-Pacific-1 (DR)

• Disaster recovery site

• Cold standby databases

• Backup storage (S3)

• 4-hour RTO target

DevOps & CI/CD Pipeline

Automated Deployment Pipeline

Code Push
Tests
Build
Deploy
Monitor

GitHub Actions Workflow

name: AstraPath AI - Production Deploy

on:
  push:
    branches: [main]
  pull_request:
    branches: [main]

jobs:
  test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-node@v4
        with:
          node-version: '20'
          cache: 'npm'
      
      - name: Install dependencies
        run: npm ci
      
      - name: Run tests
        run: |
          npm run test:unit
          npm run test:integration
          npm run test:e2e
      
      - name: Run security audit
        run: npm audit --audit-level high
      
      - name: Generate test coverage
        run: npm run coverage
      
      - name: SonarCloud Scan
        uses: SonarSource/sonarcloud-github-action@master

  build-and-deploy:
    needs: test
    runs-on: ubuntu-latest
    if: github.ref == 'refs/heads/main'
    
    steps:
      - name: Build Docker images
        run: |
          docker build -t astrapath/api:${{ github.sha }} .
          docker build -t astrapath/ai:${{ github.sha }} ./ai-service
      
      - name: Push to registry
        run: |
          echo ${{ secrets.DOCKER_PASSWORD }} | docker login -u ${{ secrets.DOCKER_USERNAME }} --password-stdin
          docker push astrapath/api:${{ github.sha }}
          docker push astrapath/ai:${{ github.sha }}
      
      - name: Deploy to Kubernetes
        run: |
          kubectl set image deployment/api api=astrapath/api:${{ github.sha }}
          kubectl set image deployment/ai-service ai=astrapath/ai:${{ github.sha }}
          kubectl rollout status deployment/api
          kubectl rollout status deployment/ai-service

Load Testing & Performance Benchmarks

Load Testing Configuration

// K6 Load Testing Script
import http from 'k6/http';
import { check, sleep } from 'k6';
import { Rate } from 'k6/metrics';

const errorRate = new Rate('errors');

export let options = {
  stages: [
    { duration: '5m', target: 100 },   // Ramp-up
    { duration: '10m', target: 500 },  // Normal load
    { duration: '5m', target: 1000 },  // Peak load
    { duration: '10m', target: 1000 }, // Sustained peak
    { duration: '5m', target: 0 },     // Ramp-down
  ],
  thresholds: {
    http_req_duration: ['p(95)<500'],
    http_req_failed: ['rate<0.1'],
    errors: ['rate<0.1'],
  },
};

export default function () {
  // Test API endpoints
  const response = http.get('https://api.astrapath.ai/health');
  check(response, {
    'status is 200': (r) => r.status === 200,
    'response time OK': (r) => r.timings.duration < 200,
  });

  // Test AI endpoint with authentication
  const aiResponse = http.post(
    'https://api.astrapath.ai/ai/tools/execute',
    JSON.stringify({
      toolId: 'interview_coach',
      input: { question: 'Tell me about yourself' }
    }),
    {
      headers: {
        'Content-Type': 'application/json',
        'Authorization': `Bearer ${__ENV.API_TOKEN}`
      }
    }
  );
  
  check(aiResponse, {
    'AI response success': (r) => r.status === 200,
    'AI response time': (r) => r.timings.duration < 5000,
  });

  errorRate.add(response.status !== 200);
  sleep(Math.random() * 3);
}

Performance Benchmarks

Concurrent Users (Sustained) 10,000+
Peak Load Capacity 50,000 req/min
Database Query Performance < 50ms avg
AI Processing Throughput 100 jobs/sec
99th Percentile Response < 2.5s

Stress Test Results

Breaking Point: 75,000 concurrent users

Recovery Time: < 30 seconds after load drop

Memory Usage: Linear scaling up to 32GB

CPU Utilization: Optimal at 70% average

Database Connections: Pool size 1000 max

Technical Roadmap & Future Enhancements

Q1

Foundation Phase

Core microservices architecture
Basic AI tool integration
User authentication & RBAC
MVP deployment on AWS
Q2

Scaling Phase

Multi-region deployment
Advanced caching layers
Real-time analytics pipeline
Enterprise integration APIs
Q3

Innovation Phase

Custom AI model training
Edge computing deployment
Blockchain integration
VR/AR learning modules

Technology Evolution Timeline

2025 Q1: Microservices + Kubernetes deployment
Foundation
2025 Q2: Service mesh (Istio) + Advanced monitoring
Scale
2025 Q3: Edge computing + Custom silicon integration
Innovation
2025 Q4: Quantum computing research + Web3 integration
Future